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Chapter 1 

Executive Summary 

This is the final report for the project Research in Continuous Speech Recognition, sponsored 
by the Advanced Research Agency (ARPA) and monitored by ONR under Contract No. 
N00014-91-C-0115. The report covers the period 25 March 1991 to 30 June 1994. 

The objective of this basic research is to develop accurate and detailed mathematical mod- 
els of the fundamental units of speech (phonemes) for large-vocabulary continuous speech 
recognition. The important goals of this work are to achieve the highest possible word 
recognition accuracy in continuous speech and to develop methods for the rapid adaptation 
of phonetic models to the voice of a new speaker. 

The research during the past three years can be categorized into four broad topics: 
developing better speech and language models to improve the accuracy of large-vocabulary, 
speaker-independent, continuous speech recognition; developing methods for using these 
more complex models of speech and language efficiently; developing techniques for dealing 
with the phenomena found in spontaneous speech; and developing techniques for dealing 
with differences (along many dimensions, including speaker, accent, microphone, domain, 
etc.) between the training and test conditions. 

In addition to the research performed, a substantial portion of our effort was devoted 
to the development of speech and language corpora and testing methodologies within the 
research community which will support and encourage rapid advancement in all of these 
areas. 

The past three years has seen a dramatic change in the problems we have worked on. 
Prior to this period, the primary focus within the ARPA speech recognition community was 
on the Resource Management (RM) task, which was a 1000-word read-speech task with a 
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rather restricted language model. While tremendous progress in acoustic modeling was made 
on that task, there were many dimensions left untouched. In this project we worked on the 
recognition of goal-directed spontaneous speech, in the Airline Travel Information Service 
(ATIS) domain, with a vocabulary of a few thousand words, and the very-large vocabulary 
Wall Street Journal (WSJ) dictation task. At the same time that we have been learning to 
deal with the new problems and large sizes of these corpora, we have also seen several 
further improvements in accuracy. 

The advances achieved in this project have been made within BYBLOS, BBN's research 
system for continuous speech recognition. Among the salient accomplishments, we have: 

1. Reduced the word error rate on the ATIS task from 18% to only 3%. 

2. After modifying BYBLOS to deal with much larger vocabularies and larger amounts 
of training data, reduced the word error rate on the WSJ dictation task from 16% to 
6% with a vocabulary of 5,000 words, and from over 20% to 12% with a vocabulary 
of 20,000 words. 

3. In 1991, demonstrated the first real-time continuous speech recognition with a vocab- 
ulary of over 1,000 words. 

4. In 1992, demonstrated the first software-only, real-time continuous speech recognition 
using standard off-the-shelf workstations with no accelerator boards. 

5. Demonstrated the first software-only, real-time continuous speech recognition with a 
vocabulary of 20,000 words in 1993, and with a vocabulary of 40,000 words in 1994. 

6. Developed a new methodology for speaker-independent training that requires training 
speech from only a few speakers. 

7. Demonstrated that a system trained only on speech recorded with a high-quality micro- 
phone can achieve comparable recognition accuracy when tested on telephone speech. 

8. Using rapid speaker adaptation techniques, showed a factor of two reduction in word 
error rate for nonnative speakers when tested with a system trained only on native 
speakers of American English. 

For the last two years, Mr. Francis Kubala from BBN chaired the CSR (Continuous 
Speech Recognition) Corpus Coordination Committee. We participated heavily in developing 
the new "hub and spokes" paradigm for the evaluation of CSR systems, in which all systems 
are evaluated with a small hub condition, and different systems participate in the different 
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spokes based on the work being done at each site. The new evaluation procedure is the most 
comprehensive ever established. 

We participated in the annual ARPA Human Language Technology workshops by pre- 
senting papers and giving demonstrations of the technology developed under this effort. 
References to the papers from these workshops, as well as other presentations and papers, 
can be found in the bibliography: [1, 2, 3, 4, 5, 6, 11,14, 16, 22, 23, 32, 33, 34, 35, 36, 37]. 

The research and other work performed under each of these areas is summarized below. 
In Chapter 2, we describe methods for improved speech modeling. Chapter 3 discusses 
issues related to training scenarios that make more efficient use of time or speech data. In 
Chapter 4 we describe improvements to the language models used for speech recognition. 
And Chapter 5 deals with our work on recognition of spontaneous goal-directed speech, as 
in the ATIS domain. Finally, we summarize our work on making speech recognition robust 
to changes in channel, environment, and domain in Chapter 6. 



Chapter 2 

Improved Speech Models 

The primary goal of this project has been to develop more powerful models of speech and 
language and to develop practical methodologies for training and testing under different 
conditions. We have considered several different variations in training scenarios. We have 
also developed methods for dealing with different cases of differences between the training 
and testing conditions. 

In this chapter, we describe the version of BYBLOS used in November '92 for the 
experiments on training issues. We also describe the improvements made to the system used 
for the tests performed in November '93. Following this we describe several experiments 
related to various training issues. 

2.1    Improvements to BYBLOS 

We extended the BYBLOS system in several ways in an attempt to provide more detailed 
acoustic-phonetic information and more reliable operation, such as the refinement of robust 
smoothing techniques and the elimination of extraneous silence periods. We avoid training 
on passages of speech for which we don't have a reliable transcription, for example, when 
the speaker stutters badly. We also use various multiple-pass search strategies in order 
to make the computation and storage manageable for large vocabulary problems, and to be 
able to incorporate many different knowledge sources efficiently. Most of the computation is 
performed in parallel on several workstations using a load-balancing batch queue. This allows 
us to complete fairly expensive training and decoding operations with a short turnaround time. 
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The November '92 BYBLOS system used 45 cepstrum/energy features per frame, includ- 
ing 14 mel-frequency cepstral coefficients (MFCCs), and their first and second derivatives. 
We subtract the mean MFCC (measured over the whole utterance) from each frame in the 
utterance. We use Tied Gaussian mixture (top 5) densities, estimated directly from the initial 
VQ codebook, and not reestimated during forward-backward training. 

We estimate four types of context-dependent phonetic models: triphone, left, right, and 
context-independent. The lower order models are used both to smooth the triphone models 
and to synthesize triphone models for those triphones not observed in the training, but 
required for decoding. We use triphone cooccurrence smoothing [13] to smooth the mixture 
weights of the context-dependent models. This made it possible to benefit from triphones 
with only one training sample. We also remove long pauses in the speech using a causal 
energy-based speech detector. The remaining short pauses in the training speech are detected 
using a constrained segmentation. 

The decoder used a 4-pass search strategy [6]. The strategy used a forward pass followed 
by a backward Word-Dependent N-best search algorithm [14] with a bigram language model, 
within-word triphone models, and top-1 (discrete VQ) densities. The N-best hypotheses 
were then rescored using cross-word context models and top-5 mixture densities, and the 
appropriate (bigram or trigram) language model for the test being performed. 

We used gender-dependent models. To accomodate some speakers whose speech was not 
modeled well by either the male or female models, we included a third gender-independent 
model. The answer that produced the highest total score was selected. 

2.1.1   New HMM topologies 

During the past year, the size of the training corpus of speech was increased by a factor of 
5. In order to be able to make use of more training data, we increased the complexity of the 
phonetic models. First, we increased the model from 3 states to 5. We also experimented 
with a phonetic model consisting of 13 states in three parallel paths - a short, medium, and 
long one. 

2.1.2   Clustered Densities 

We implemented the state clustering algorithm proposed by Hwang [8] using a bottom-up 
agglomerative clustering technique. The clustering was constrained to group only those 
states that were in the same position within the same phone. The number of independent 
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states was reduced by about a factor of five. We did not use the top-down decision tree 
technique for predicting unseen triphones [9]. Triphones needed for recognition that did not 
occur during training were synthesized from the appropriate left- and right-context models. 

2.1.3   Lattice Decoder 

It has frequently been asserted that the N-best decoding strategy must cause search errors 
when the error rate is high and the sentences are long, as is true with sentences in the WSJ 
corpus. Therefore, we developed a new 6-pass decoding strategy that combines several 
multi-pass search paradigms: 

1. A fast match algorithm that finds the most likely word-ending scores and times at each 
frame [5]. 

2. A backward search using bigram language models, within-word triphones, and discrete 
HMM models. 

3. A forward search using the same models as pass 2. 

4. From passes 2 and 3, we construct a lattice of all likely word sequences [10]. The 
lattice is expanded to allow scoring with trigram language models and cross-word 
triphone acoustic models. Because there is a separate copy of each word depending on 
the following word, a biproduct of this pass is the Word-Dependent N-best hypotheses 
[14]. 

5. The N-best hypotheses are then rescored independently with any available models, 
such as 13-state HMM models, a trigram language model, and Segmental Neural Nets 
(SNN), [15] or Stochastic Segment Models [11]. 

6. Using weights designed to minimize the word error on a development set, the scores 
are combined and the hypotheses are reordered to produce a new list. At this point we 
can choose the top answer or pass the list on to an understanding system for further 
selection based on meaning. 

While it may appear that a 6-pass strategy must be slow, it is not so. The first pass 
(fast match) is very fast and each successive pass is faster than the previous one, due to 
the greatly reduced search space. However, we found that the accuracy was only slightly 
improved over the previous year's strategy, in which the N-best search was performed using 
bigram, non-crossword models. This shows that there were few search errors in the previous 
method. 
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2.1.4 Segmental Neural Networks 

In an effort to overcome the independence assumption inherent in HMM models, we have 
used a Segmental Neural Network (SNN) [15] to model a whole phonetic segment as a 
single unit. The SNN transforms each variable-length input segment into a fixed-length in 
order to model all of the parameters jointly. The output of the SNN is a posterior probability 
for each hypothesized phoneme in each hypothesized sentence. The output scores and the a 
priori probabilities are given as additional scores for each of the N-best hypotheses supplied 
by the decoder. These scores are then used in combination with the HMM scores. 

Each frame of input contained 14 Mel-Scaled cepstra, normalized energy, and delta 
energy. First we converted the parameters of each variable-length phonetic segment into 
a fixed-length input by performing a DCT on each input cepstrum sequence, resulting in 
5 (smoothed) parameters for each original sequence. The resulting (80) parameters were 
input to a 2-layer perceptron network. The first layer consisted of randomly chosen weights 
from the input to 500 hidden units. The second layer had weights from the hidden layer 
to each of the possible (56) output phones. The second layer was estimated using linear 
least squares techniques. There was a separate second layer for each possible left or right 
phonetic context. 

This is the first time we used the SNN models for very large vocabulary speech recog- 
nition. The use of the SNN typically reduces the word error rate by about 8-10%. 

2.1.5 Weight Optimization 

In addition to the large number of acoustic and language model parameters in a recognition 
system, there are several system parameters that must be tuned for optimal performance. 
Many of these cannot be estimated directly using the same techniques (e.g., maximum like- 
lihood). Some examples of these parameters are: word and phoneme insertion penalties, the 
grammar weight, the codebook weights, and the weights of alternate acoustic models. The 
word insertion penalty is an additional probability that we multiply by for each transition 
to a new word (in addition to the grammar probability). This is used to control the bal- 
ance between insertions and deletions. The language model weight is an exponent on each 
grammar probability that allows us to obtain the best balance between the acoustic model 
scores and the language model scores. Finally, each different acoustic model is weighted by 
exponentiating the probabilities according to their relative power. 

Clearly we would like to set these parameters to optimize recognition accuracy directly. 
However, maximum likelihood estimation techniques cannot be used to estimate these ex- 
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ponent parameters. Therefore, we typically run several recognition experiments - each 
requiring a few hours - to try to find the best system parameters. However, this tuning often 
requires extensive experience and too many experiments. 

The total probability of a sentence hypothesis can be expressed as the product of the 
exponentiated probabilities of each knowledge source (KS): 

Utt-score = HMMScore" * 
GrammarScore^ * 
WordPenaltyw<i' * 
PhonePenalty#p,lOTl" 

The unknown values are the exponents a and ß, and the WordPenalty, and PhonePenalty. 
If we take the log, we have 

log Utt-score = log HMMScore * a + 
log GrammarScore * ß + 
#words * log WordPenalty + 
#phones * log PhonePenalty 

Now, the unknown values on the right are just linear weights for the KSs on the left. 
Admittedly the number of words and phones are simple KSs, but we find that including 
these terms significantly improves recognition accuracy. We need to find the four values 
that minimize the error rate. While minimizing error rate directly for continuous speech is 
usually difficult, it becomes easy if we change the problem to one of minimizing the error 
rate when choosing among the N-Best alternatives for an utterance. First, we find the N-Best 
hypotheses for all of the utterances in a development test set. The rescoring step provides 
the log probabilities for each hypothesis for each KS separately. We use a gradient search to 
find the set of weights that, averaged over the development set, brings to the top the answer 
with the smallest number of errors. To evaluate a particular set of weights we compute the 
total weighted log score for each hypothesis (the dot product of the weights and scores), 
and then find the hypothesis with the maximum total score for each utterance. We measure 
the word error rate for this top choice for each utterance in the set in the usual way. The 
total word error rate over the set is our evaluation function for this set of weights. The 
computation needed to evaluate a set of weights for 100 hypotheses for 300 test utterances 
can be measured in milliseconds. Therefore we can consider several thousand weight vectors 
in a few seconds in our search for the set of weights that minimizes word error rate on the 
development set. As long as the development test set contains enough utterances - say 300 
- we find that the weights found are also good for new test sets. 
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2.2    Continuous Densities 

In the past, we have primarily used discrete-density HMMs and tied-mixture (TM) HMMs. 
We had found that the accuracy was just as high as for continuous density HMMs, and that 
the programs required far less computation. However, there is increasing evidence that, as 
the amount of training speech increases, the accuracy of continuous density HMMs continues 
to improve, while the tied-mixture HMMs does not improve very much after several hours 
of training. Therefore, we have also begun to explore the use of HMMs with more densities. 

Rather than using completely independent Gaussian density mixtures for each state, how- 
ever, we have decided to continue to use "codebook-like" densities, with sets of Gaussians 
tied across several states. This method has been called phoneme-tied mixtures (PTM) when 
the codebooks are common to each phoneme, or "genones" when the codebooks are more 
specific [12]. (We prefer to use a more descriptive term for the latter system, which we 
would call State-Tied-Mixtures.) 

The primary advantage of using more codebooks is that it allows us to model all of the 
45 parameters joindy within each density. At this point, we have implemented the PTM 
system with a single parameter stream and have found that the accuracy is roughly the same 
as we had with our TM system with multiple parameter streams. Thus, the advantage for 
more codebooks and being able to model dependence is offset by the decreased resolution 
resulting from using one parameter stream. 

We are currently increasing the number of codebooks to about 1,000 based on the state- 
clustering algorithm. 



Chapter 3 

HMM Training Issues 

One of the important design considerations in developing a speech recognition system is how 
the system will be trained. We have considered and compared several alternative training 
scenarios and methods for large vocabulary continuous speech recognition. The Wall Street 
Journal (WSJ) corpus provides the opportunity to test many of these methods. 

We performed five key experiments that were designed to answer questions related to 
different training scenarios. We investigated 1) the effect of varying the number of training 
speakers if the total amount of training data remains constant, 2) data pooling versus model 
averaging for generating Speaker-Independent (SI) HMMs, 3) the benefit of doubling the 
acoustic training data, 4) SI versus SD performance when the SI training data is twelve 
times greater, and 5) the effect of cross-domain training for both the acoustic and language 
models. 

3.1    Effect of Number of Training Speakers 

It has always been assumed that for speaker independent recognition to work well, we must 
train the system on as many speakers as possible. For the first time we were able to perform 
a well-controlled experiment to answer this question on the WSJO corpus. We found, to 
our surprise, that there is little advantage for having more speakers if the total amount of 
speech is fixed. Specifically, training with 600 sentences each from 12 speakers gave almost 
the same performance as training with 7,200 sentences from 84 different speakers. The 
12 speakers were selected randomly, without any effort to be sure that they covered the 
general population. In addition, we found that we could also achieve essentially the same 
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performance if we trained the system separately on each of the speakers and averaged the 
resulting models, as if we trained jointly on all of the speakers together. Both of these results 
have important implications for practical speech corpus collection. 

The following results were obtained on the 5K VP closed-vocabulary development test 
set of the WSJO corpus using the standard bigram grammar. The experiment was repeated 

Pooled   Averaged 
SI-12     11.6 12.0 
SI-84     11.2 12.3 

on the 5K NVP closed-vocabulary development test and we found the differences to be even 
smaller between the SI-84 pooled and SI-12 averaged approaches. 

3.2    Effect of Additional Training 

We usually observe that the recognition error rate decreases as the square root of the amount 
of training speech. For example, when we double the amount of training, we observe that the 
error rate decreases by 30%. We doubled the amount of acoustic training by combining the 
two corpora above resulting in 14,400 total utterances from WSJO. Results for the 5K NVP 
development test are shown below. The results show a 5% decrease in error instead of the 

Training Corpus Word Error 
(1) SI-12, averaged 11.3 
(2) SI-84, pooled 11.2 
(3) SI-12+84, avg of 1 + 2 10.6 

expected 30% decrease. This shows that the models used are not able to take advantage of 
additional training data. Later on, when we used 37,000 sentences of training from the WSJ1 
corpus, we also observed a rather small decrease in error rate. We are now improving our 
overall modeling strategy so that we will be able to take better advantage of more training 
data. 
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3.3    Speaker-Dependent vs Speaker-Independent 

Below we compare the recognition error rate between SI and SD recognition. The SI models 
were trained with 7,200 sentences, while the SD models were trained with only 600 sentences 
each. The SI results were obtained for two different sets of test speakers. For the SD case, 
we compare two different test sets from the training speakers. These experiments were 
performed using the 5K-word NVP closed-vocabulary test sets, using the standard bigram 
language models. As can be seen, the word error rate for the SI model is only somewhat 

Training 
Test 
Dev. Test 
Nov. '92 Eval 

SI-12    SD-1 
(7200)    (600) 

10.9       7.9 
8.7        8.2 

higher than for the SD model, depending on which SI test set is used. We estimate that, on 
the average, if the amount of SD training were reduced such that the training speech for the 
SI model were 15-20 times that used for the SD model, then the average word error rate 
would be about the same. 

3.4    Domain Independence 

Hon [7] has shown that, with some care, and large amounts of training speech from several 
different domains under similar environmental conditions, it is possible to achieve reasonable 
accuracy on a new domain, given the correct language model and vocabulary. 

We performed an experiment in which we compared the effects of deriving the acoustic 
training data, the vocabulary, and the language model statistics from other domains. Our test 
set was the Feb. 1992 ATIS test set. The other training was limited to the WSJ0 corpus. The 
ATIS2 training set contains approximately 10 hours of spontaneous speech training, while 
the WS JO SI-12 training corpus contains 12 hours of read speech. For these experiments 
we used a bigram grammar only, with cross-word rescoring of the acoustic models. When 
the grammar was from ATIS, the vocabulary contained 1830 words, including about 400 
ATTS-specific compound words. The "ATIS null" grammar assumes all words are equally 
likely. 

The table below shows, for each condition, the language model (which includes the 
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vocabulary), the source of the acoustic training, the resulting word error rate, and the er- 
ror factor, which is the ratio of the word error rate to the control condition.  From these 

Language 
Model 

Acoustic 
Training 

Word 
Error 

Error 
Factor 

ATIS bigram 

ATIS bigram 
ATIS null 
ATIS null 
WSJ 20K bigram 

ATIS 

WSJ 
ATIS 
WSJ 
WSJ 

9.2 

13.0 
28.6 
50.5 
55.3 

1.0 

1.4 
3.1 
5.5 
6.0 

(Control) 

preliminary experiments one can derive two obvious conclusions: 

1) Given a reasonably diverse acoustic training set, there is relatively little degradation 
in the acoustic model when moving to a new domain. This was true, despite the fact that the 
amount of training was approximately equal in both cases above, and also that the training 
data was read speech, while the test was spontaneous speech. Furthermore, the training data 
was collected at two sites, whereas the ATIS test data originated from 5 sites. 

2) The lack of an appropriate language model is clearly a much more serious problem. 
Whether we use a null grammar with the correct vocabulary, or a well-trained language 
model from another source, the error rate is degenerate. 

3.5    Summary of Results 

We summarize our experiments on training issues as follows: 

1. Counter to intuition, given a fixed amount of training speech, increasing the number 
of training speakers has little effect on performance. In addition, averaging independently 
trained SD models is nearly as good as pooling the training data to estimate the maximum 
likelihood models. 

2. Our current models are not able to utilize large amounts of acoustic training material to 
improve performance. 

3. Speaker-independent (SI) recognition with 12 hours of training speech is almost as good 
as speaker-dependent (SD) recognition with one hour of training. 



Chapter 4 

Language Modeling Improvements 

Speech recognition accuracy is affected as much by the language model as by the acoustic 
model. In general, for language models of the same type, the word error rate is roughly 
proportional to the square root of the perplexity of the language model. In addition, in a 
natural unlimited vocabulary task, a substantial portion of the word errors come from words 
that are not even in the recognition vocabulary. These out-of-vocabulary (00V) words have 
no chance of being recognized correctly. Thus, our goal is to estimate a good language 
model from the available training text, and to determine a vocabulary that is likely to cover 
the test vocabulary. 

The straightforward solution to improving the language model might be to increase the 
complexity of the model (e.g., use a higher order Markov chain) and/or obtain more language 
model training text. But this by itself will not necessarily provide a better model, especially 
if the text is not an ideal model of what people will actually say. The simple solution to 
increase the coverage of the vocabulary is to increase the vocabulary size. But this may 
also increase the word error rate and it increases the computation and size of the recognition 
process. 

In this chapter we present several simple techniques for improving the power of the 
language model. First, we explore the effect of increasing the vocabulary size on recognition 
accuracy in an unlimited vocabulary task. Second, we consider ways to model the differences 
between the language model training text and the way people actually speak. And third, we 
show that simply increasing the amount of language model training helps significantly. 

18 
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4.1   The WSJ Corpus 

The November 1993 ARPA Continuous Speech Recognition (CSR) evaluations were based 
on speech and language taken from the Wall Street Journal (WSJ). The standard language 
model training text was estimated from about 35 million words of text extracted from the 
WSJ from 1987 to 1989. The text was normalized (preprocessed) with a model for what 
words people use to read open text. For example, "$234.56" was always assumed to be read 
as "two hundred thirty four dollars and fifty six cents". "March 13" was always normalized 
as "March thirteenth" - not "March the thirteenth" nor "March thirteen". And so on. 

The original processed text contains about 160,000 unique words. However, many of 
these are due to misspellings. Therefore, the test corpus was limited to those sentences that 
consisted only of the most likely 64,000 words. While this vocabulary is still quite large, it 
has two beneficial effects. First, it greatly reduces the number of misspellings in the texts. 
Second, it allows implementations to use 2-byte data fields to represent the words rather 
than having to use 4 bytes. 

The "standard" recognition vocabulary was defined as the most likely 20,000 words in 
the corpus. Then, the standard language model was defined as a trigram language model 
estimated specifically for these 20K words. This standard model, provided by Lincoln 
Laboratory, was to be used for the controlled portion of the recognition tests. In addition, 
participants were encouraged to generate an improved language model by any means (other 
than examining the test data). 

4.2   Recognition Lexicon 

Typically, we find that over 2% of the word occurrences in a development set are not included 
in the standard 20K-word vocabulary. Naturally, words that are not in the vocabulary cannot 
be recognized accurately. (At best, we might try to detect that there is one or more unknown 
words at some point in a sentence, and then attempt to recognize the phoneme sequence, and 
then guess a possible letter sequence for this phoneme sequence. Unfortunately, in English, 
even if we could recognize the phonemes perfectly, there are many valid ways to spell a 
particular phoneme sequence.) However, in addition to a word not being recognized, we 
often see that one or two words adjacent to the OOV word are also misrecognized. This 
is because the recognition, in choosing a word in its vocabulary, also now has the wrong 
context for the following or preceding words. In general, we find that the word error rate 
increases by about 1.5 to 2 times the number of OOV words. 
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One simple way to decrease the percentage of OOV words is to increase the vocabulary 
size. But which words should be added? The obvious solution is to add words in order of 
their relative frequency within the full text corpus. There are several problems that might 
result from this: 

1. The vocabulary might have to be extremely large before the OOV rate is reduced 
significantly. 

2. If the word error rate for the vast majority of the words that are already in the smaller 
vocabulary increased by even a small amount, it might offset any gain obtained from 
reducing the OOV rate. 

3. The language model probabilities for these additional words would be quite low, which 
might prevent them from being recognized anyway. 

We did not have phonetic pronunciations for all of the 64K words. We sent a list of 
the (approximately 34K) words for which we had no pronunciations to Boston University. 
They found pronunciations for about half (18K) of the words in their dictionary. When we 
added these words to our WSJ dictionary, we had a total of 50K words that we could use 
for recognition. 

The following table shows the percentage of OOV words as a function of the vocabulary 
size. The measurement was done on the WSJ1 Hubl 20K development test which has 2,464 
unique words with the total count of 8,227 words. 

Vocab. #OOV % 

19998 187 2.27 
28247 85 1.03 
35298 39 0.47 
40213 14 0.17 
41363 12 0.15 
48386 1 0.01 

Table 4.1: The number of different OOV words and the percentage of OOV words in the 
test as a function of the vocabulary size 

We were somewhat surprised to see that the percentage of OOV words was reduced 
to only 0.17% when the lexicon included the most likely 40K words - especially given 
that many of the most likely words were not available because we did not have phonetic 
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pronunciations for them. Thus, it was not necessary to increase the vocabulary above 40K 
words. 

The second worry was that increasing the vocabulary by too much might increase the 
word error rate due to the increased number of choices for each of the words that we 
previous found correctly. So we performed an experiment in which we used the standard 
20K language model for the 5K development data. In this case, the increased vocabulary 
can only increase the error rate. We found, to our surprise, that the error rate increased 
only slightly, from 8.7% to 9.3%. Therefore, we felt confident that we could increase the 
vocabulary as needed. 

We considered possible explanations for the small increase in error due to a larger 
vocabulary. We realized that the answer was in the language model. In the first case, 
when we just increase the vocabulary, the new words also have the same probability in the 
language model as the old words. However, in this case, all the new words that were added 
had lower probabilities (at least for the unigram model) than the existing words. Let us 
consider two possibilities that we would not falsely substitute a new word for an old one. 
If the new word were acoustically similar to one of the words in the test, and therefore 
similar to a word in the original vocabulary, then the word would be correctly recognized 
because the original word would always have a higher language model probability. If, on 
the other hand, the new word were acoustically very different from the word being spoken, 
then we might expect that our acoustic models would prevent the new word from being 
chosen over the old word. While the argument makes some sense, we did not expect the 
loss for increasing the vocabulary from 5K words to 20K words to be so small. 

Finally, the third question is whether the new words would be recognized when they did 
occur, since (as mentioned above) their language model probabilities were generally low. 
In fact, we found that, even though the error rate for these new words was higher than for 
the more likely words, we were still able to recognize about 50% to 70% of them correctly, 
presumably based largely on the acoustic model. Thus, the net effect of this was to reduce 
the word error rate by about 1% to 1.5%, absolute. 

4.3   Modeling Spoken Language 

Another effect that we worked on was the difference between the processed text, as defined 
by the preprocessor, and the words that people actually used when reading WSJ text. In the 
pilot WSJ corpus, the subjects were prompted with texts that had already been "normalized", 
so that there was no ambiguity about how to read a sentence. However, in the WSJ1 
corpus, subjects were instructed to read the original texts and to say whatever seemed most 
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appropriate to them. Since the WSJ1 prompting texts were not normalized to deterministic 
word sequences, subjects showed considerable variability in their reading of the prompting 
text 

However, the standard language model was derived from the normalized text produced 
by the preprocessor. This resulted in a mismatch between the language model and the actual 
word sequences that were spoken. While the preprocessor was quite good at predicting what 
people said most of the time, there were several cases where people used different words 
than predicted. For example, the preprocessor predicted that strings like "$234" would be 
read as "two hundred thirty four dollars". But in fact, most people read this as "two hundred 
AND thirty four dollars". For another extreme example, the preprocessor's prediction of 
"10.4" was "ten point four", but the subject (in the WSJ1 development data) read this as 
"ten and four tenths". There were many other similar examples. 

The standard model for the tests was the "nonverbalized punctuation" (NVP) model, 
which assumes that the readers never speak any of the punctuation words. The other model 
that had been defined was the "verbalized punctuation" (VP) model, which assumed that all 
of the punctuation was read out loud. This year, the subjects were instructed that they were 
free to read the punctuation out loud or not, in whatever way they feel most comfortable. It 
turns out that people didn't verbalize most punctuation. However, they regularly verbalized 
quotation marks in many different ways that were all different than the ways predicted by 
the standard preprocessor. 

There were also several words that were read differently by subjects. For example, sub- 
jects pronounced abbreviations like, "CORP." and "INC.". While the preprocessor assumed 
that all abbreviations would be read as full words. 

We used two methods to model the ways people actually read text. The simpler approach 
was to include the text of the acoustic training data in the language model training. That 
is, we simply added the 37K sentence transcriptions from the acoustic training to the 2M 
sentences of training text. The advantage of this method is that it modeled what people 
actually said. The system was definitely more likely to recognize words or sequences that 
were previously impossible. The problem with this method was that the amount of transcribed 
speech was quite small (about 50 times smaller) compared to the original training text. We 
tried repeating the transcriptions several times, but we found that the effect was not as strong 
as we would like. 

A more powerful approach was to simulate the effects of the different word choices by 
simple rules which were applied to all of the 35M words of language training text. We chose 
to use the following rules: 
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^reprocessed Text Simulated Text 
HUNDRED [number] HUNDRED AND [number] 
ONE HUNDRED A HUNDRED 
ONE DOLLAR A DOLLAR 
ZERO POINT [number] POINT [number] 
AND ONE HALF AND A HALF 
AND ONE QUARTER AND A QUARTER 

Thus, for example, if the sentence consists of the pattern "hundred twenty", we repeated 
the same sentence with "hundred AND twenty". 

The result was that about one fifth of the sentences in the original corpus had some 
change reflecting a difference in the way subjects read the original text. Thus, this was 
equivalent in weight to an equal amount of training text to the original text. 

We found that this preprocessing of the text was sufficient to cover most of those cases 
where the readers said things differently than the predictions. The recognition results showed 
that the system now usually recognized the new word sequences and abbreviations correctly. 

4.4    Increasing the Language Model Training 

While 35M words may seem like a lot of data, it is not enough to cover all of the trigrams 
that are likely to occur in the testing data. So we considered other sources for additional 
language modeling text. The only easily accessible data available was an additional 3 years 
(from 1990-1992) of WSJ data from the TIPSTER corpus produced by the Linguistic Data 
Consortium (LDC). 

However, there were two problems with using this data. First, since the test data was 
known to come from 1987-1989, we were concerned that this might actually hurt performance 
due to some differences in the topics during that 3-year period. Second, this text had not 
been normalized with the preprocessor and we did not have available to us the preprocessor 
that was used to transform the raw text into word sequences. 

We decided to use the new text with minimal processing. The text was filtered to remove 
all tables, captions, numbers, etc. We replaced each initial example of double-quote (") with 
"QUOTE and the matching token with "UNQUOTE or "ENDQUOTE, which were the most 
common ways these words were said. No other changes were made. One benefit of this was 
that abbreviations were left as they appeared in the text rather than expanded. Any numbers, 
dates, dollar amounts, etc, were just considered "unknown" words, and did not contribute to 
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the training. We assumed that we had sufficient examples of numbers in the original text. 

We found that adding this additional language training data reduced the error by about 
1% of the error, indicating that the original 35 million words was not sufficient for the models 
we were using. Thus, the addition of plain text, even though it was from a different three 
years, and had many gaps due to apparent unknown words, still improved the recognition 
accuracy considerably. 

4.5   Results 

The following table shows the benefit of the enlarged 40K lexicon and the enhanced language 
model training on the OOV rate and the word error for the development test and the evaluation 
test 

Test Set 
% OOV % Word Error 

20K 40K 20K 40K 
Development 
Evaluation 

2.27 
1.83 

0.17 
0.23 

16.4 
14.2 

12.9 
12.2 

Surprisingly, the addition of three year's LM training (from a period post-dating the test 
data) improved performance on the utterances that were completely inside the vocabulary. 
Evidently, even the common trigrams are poorly trained with only the 35 million word WSJO 
corpus. Overall, our modifications to the lexicon and grammar training reduced the word 
error by 14-22%. 

4.6   Spontaneous Dictation 

Another area we investigated was spontaneous dictation. The subjects were primarily former 
or practicing journalists with some experience at dictation. They were instructed to dictate 
general and financial news stories that would be appropriate for a newspaper like WSJ. In 
general, the journalists chose topics of recent interest. This meant that the original language 
model was often out of date for the subject. As a result, the percentage of OOV words 
increased (to about 4%), and the language model taken from WSJ text was less appropriate. 

The OOV words in the spontaneous data were more likely to be proper nouns from recent 
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events that were not covered by the LM training material. To counter this, we added all 
(1,028) of the new words that were found in the spontaneous portion of the acoustic training 
data in WSJ1. This mostly included topical names (e.g., Hillary Rodham, NAFTA, etc.). 

In order to account for some of the differences between the read text and the spontaneous 
text, and to have language model probabilities for the new words, we added the training 
transcriptions of the spontaneous dictation (about 8K sentences) to the LM training as well. 

New weights for the new language model, HMM, and Segmental Neural Network were 
all optimized on spontaneous development test data. The table below shows that the OOV 
remains near 1% even after the enlargement to a 41K lexicon. 

Test Set 
%OOV % Word Error 

20K 40K 41K 20K 41K 
Development 
Evaluation 

2.9 
4.8 

1.4 
1.9 

0.8 
1.5 24.7 

21.7 
19.1 

As can be seen, increasing the vocabulary size from 20K to 40K significantly reduced 
the OOV rate. It is important to point out that in this case, we did not have the benefit of a 
word frequency list for spontaneous speech, and that the source of speech had an unlimited 
vocabulary. So the reduction in OOV rate is certainly a fair - if not pessimistic - estimate 
of the real benefit from increasing the vocabulary. Adding the few new words observed 
in the spontaneous speech also helped somewhat, but not nearly as much. The sample of 
only 8,000 sentences is clearly not sufficient to find all the new words that people might 
use. Presumably, if the sample of spontaneous speech were large enough to derive word 
frequencies, then we could choose a much better list of 40K words with a lower OOV rate. 

Overall, the 4IK trigram reduces the word error by 23% over the 20K standard trigram 
on the November '93 CSR S9 evaluation test. We estimate that more than half of this gain 
was due to the decreased percentage of OOV words, and the remainder was due to the 
increased language model training, including specific examples of spontaneous dictation. 

4.7    Conclusions 

We found the following interesting results: 
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• Expanding the vocabulary with less frequent words does not substantially increase the 
word error on words already in the vocabulary, but does eliminate many errors due to 
OOV words. 

• Doubling the amount of language model training text improves the language model, 
even though the text comes from different years than the test, and even though the 
text was not preprocessed into proper lexical forms. 

• It is possible to improve the quality of the language modeling text by modeling the 
differences between the predicted reading style and some examples of actual transcrip- 
tions. 

• Increasing the vocabulary size and language training had a bigger effect on spontaneous 
speech than it did for read speech. 



Chapter 5 

Dealing with Spontaneous Speech 

In this chapter we describe the work that we performed on making speech recognition work 
well on spontaneous speech. Spontaneous speech differs from read speech primarily in the 
style of speaking, with frequent disfluencies of different types. The Air Travel Information 
Service (ATIS) domain offers an opportunity to explore techniques for dealing effectively 
with spontaneous speech. 

The problem of understanding goal-directed spontaneous speech is harder than recogniz- 
ing and understanding read text, due to greater variety in the speech and language produced. 
We have made several modifications to our speech recognition and understanding methods to 
deal with these variabilities. The speech recognition uses a novel multipass search strategy 
that allows great flexibility and efficiency in the application of powerful knowledge sources. 
The result is a very usable system for domains of moderate complexity. 

More details on the specific techniques, the ATIS corpus, and the results can be found 
in the papers presented at the 1992 ARPA Workshop on Speech and Natural Language 
[16, 17, 18, 19]. 

5.1    The ATIS Domain and Corpus 

The Air Travel Information Service (ATIS) is a system for getting information about flights. 
The information contained in the database is similar to that found in the Official Airline 
Guide (OAG) but is for a small number of cities. The ATIS corpus consists of spoken 
queries by a large number of users who were trying to solve travel related problems. The 
ATIS2 training corpus consists of 12,214 spontaneous utterances from 349 subjects who were 

27 
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using simulated or real speech understanding systems in order to obtain realistic speech and 
language. The data originated from 5 collection sites using a variety of strategies for eliciting 
and capturing spontaneous queries from the subjects [19]. 

Each sentence in the corpus was classified as class A (self contained meaning), class 
D (referring to some previous sentence), or class X (impossible to answer for a variety 
of reasons). The speech recognition systems were tested on all three classes, although the 
results for classes A and D were given more importance. The natural language system and 
combined speech understanding systems were scored only on classes A and D, although they 
were presented with all of the test sentences in their original order. 

The Feb '92 and Nov '92 evaluation test sets had 971 and 967 sentences, respectively, 
from 37 and 35 speakers with an equal number of sentences from all 5 sites. For both test 
sets, about 43% of the sentences were class A, 27% were class D, and 30% were class X. 
The recognition mode was speaker-independent - the test speakers were not in the training 
set and every sentence was treated independently. 

5.1.1   New Extensions for Spontaneous Speech 

Spontaneous queries spoken in a problem-solving dialog exhibit a wide variety of disfluen- 
cies. There were three very frequent effects that we attempted to solve - excessively long 
segments of waveform with no speech, poorly transcribed training utterances, and a variety 
of nonspeech sounds produced by the user. 

The long segments of silence were due in part to hesitations as the speakers posed 
questions to the system and in part to the unpredictable methods employed for endpointing 
the waveforms, i.e., manual segmentation via push-to-talk and push-hold signals from the 
user. When background noise is present, the HMM is not a particularly reliable discriminator 
of speech vs. silence, and many insertion errors result. We chose to find and truncate 
long regions of nonspeech with a very reliable energy-based speech detector that can deal 
with noise bursts near the speech. The speech detector uses several simple adaptive SNR- 
dependent detection thresholds. We eliminated long periods of background with a heuristic 
energy-based speech detector. But typically, there are many untranscribed short segments of 
background silence remaining in the waveforms after truncating the long ones, These are not 
marked in the sentence transcriptions unless transcribers listen carefully to all of the training 
speech, but they measurably degrade the performance gain usually derived from using cross- 
word-boundary triphone HMMs. We mark the missing silence locations automatically by 
running the recognizer on the training data constrained to the correct word sequence, but 
allowing optional silence between words. Then we retrained the model using the output of 
the recognizer as corrected transcriptions. 
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Spontaneous data from naive speakers has a large number and variety of nonspeech 
events, such as pause fillers (urn's and uh's), throat clearings, coughs, laughter, and heavy 
breath noise. We attempted to model a dozen broad classes of nonspeech sounds that were 
both prominent and numerous. However, when we allowed the decoder to find nonspeech 
models between words, there were more false detections than correct ones. Because our 
silence model had little difficulty dealing with breath noises, lip smacks, and other noises, 
our best results were achieved by making the nonspeech models very unlikely in the grammar. 

5.1.2   Forward-Backward N-best Search Strategy 

The BYBLOS speech recognition system uses a novel multi-pass search strategy designed 
to use progressively more detailed models on a correspondingly reduced search space. It 
produces an ordered list of the N top-scoring hypotheses which is then reordered by several 
detailed knowledge sources. This N-best strategy [21, 22] permits the use of otherwise 
computationally prohibitive models by greatly reducing the search space to a few (N=20- 
100) word sequences. It has enabled us to use cross-word-boundary triphone models and 
trigram language models with ease. The N-best list is also a robust interface between speech 
and natural language that provides a way to recover from speech errors. 

We use a 4-pass approach to produce the N-best lists for natural language processing. 

1. A forward pass with a bigram grammar and discrete HMM models saves the top 
word-ending scores and times [5]. 

2. A fast time-synchronous backward pass produces an initial N-best list using the Word- 
Dependent N-best algorithm[14]. 

3. Each of the N hypotheses is rescored with cross-word-boundary triphones and semi- 
continuous density HMMs. 

4. The N-best list is rescored with a trigram grammar. 

Each utterance is quantized and decoded three times, once with each gender-dependent model 
and once with a gender-independent model. (In the Feb '92 test we did not use the gender- 
independent model.) For each utterance, the N-best list with the highest top-1 hypothesis 
score is chosen. The top choice in the final list constitutes the speech recognition results 
reported below. Then the entire list is passed to the language understanding component for 
interpretation. 
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5.1.3   Training Conditions 

We have run evaluations on the ATIS corpus on four separate occasions: Feb91, Feb92, 
Nov92, and Nov93. For the first test, in Feb91, we only had a very small amount of 
training speech and language available. Thus, the word error rates for BYBLOS (which 
were the lowest in the community) were around 16%. On the remaining tests, there was 
more representative training available, resulting in much lower error rates. 

Since there were several tests, below, we provide separate statistics for the three re- 
maining tests [Feb92,Nov92,Nov93] in the form [nl-n2-n3]. We used speech data from 
the ATIS2 subcorpus exclusively to train the parameters of the acoustic model. However, 
we filtered the training data for quality in several ways. We removed from the training any 
utterances that were marked as truncated, containing a word fragment, or containing rare 
nonspeech events. Our forward-backward training program also automatically rejects any 
input that fails to align properly, thereby discarding many sentences with incorrect transcrip- 
tions. These steps removed about 1,200 utterances from consideration. After holding out 
a development test set of [890-971-969] sentences, we were left with a total of [7,670- 
10,925-20,000] utterances for training the HMMs. Since we train gender-dependent models, 
the training was further divided for the female speakers and for the males. 

The recognition lexicon contained [1881-1830-2600] words derived from the training 
corpus and all the words and natural extensions from the ATIS application database. The 
lexicon used for recognition was initialized by including all words observed in the complete 
grammar training texts. This had the side-effect of including the entire development test set 
within the vocabulary. Common closed-class words such as days of the week, months, num- 
bers, plane types, etc., were completed by hand. Similarly, we included derivations (mostly 
plurals and possessives) of many open-class words in the domain. We also added about 400 
concatenated word tokens for commonly occurring sequences such as WASHINGTON_D_C, 
and D_C_TEN. On all of the tests, only about 0.5% of the words in the test set were not in 
the lexicon. 

For statistical language model training we used all available [14,500-17,313-29,000] 
sentence texts from ATIS0, ATIS1, and ATIS2 (excluding the development test sentences 
from the language model training during the development phase). We estimated the param- 
eters of our statistical bigram and trigram grammars using a new backing-off procedure[23]. 
The n-grams were computed on [1054-1090-1400] semantic word classes in order to share 
the very sparse training (most words remained singletons in their class). 
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5.1.4   Speech Recognition Results 

Table 5.1 shows the official results for BYBLOS on this evaluation, broken down by utterance 
class. We also show the average perplexity of the bigram and trigram language models as 
measured on the evaluation test sets (ignoring out-of-vocabulary words). 

Sentence 
Class 

Bigram 
Perplex 

Trigram 
Perplex 

Feb92-Nov92-Nov93 
% Word Errors 

A+D 
A+D+X 

17 
20 

12 
15 

6.2-4.3-3.3 
9.4-7.6-4.4 

A 
D 
X 

15 
20 
35 

10 
14 
28 

5.8-4.0-3.0) 
7.0-4.8-4.0) 

17.2-14.5-8.6) 

Table 5.1: Official SPREC results on Feb92, Nov92, and Nov93 test sets. 

The word error rate in each category was lower than any other speech system reporting on 
this data. The recognition performance was well correlated with the measured perplexities. 
The trigram language model consistently, but rather modestly, reduced perplexity across all 
three classes. (However, we observed that word error was reduced by 40% on classes A+D 
with the trigram model.) More striking are the differences between the perplexities of the A 
and D sentences and the Class X sentences (those which are unevaluable with respect to the 
database). The error rate dropped dramatically with each successive test. For example, the 
error on class A+D sentences went from 18% in 1991 and 6% in early 1992 down to 3% 
in 1993. This drop is due primarily to the availability of appropriate training speech, and 
somewhat due to improved methods. 

The performance on the class X utterances (those which are unevaluable with respect to 
the database) is markedly worse than either class A or D utterances. In fact, well over half 
of the speech errors occur on these utterances. Since these utterances are not evaluable by 
the natural language component, it does not seem profitable to try to improve the speech 
performance on these utterances for a spoken language system. 

The individual speaker results varied widely from 0.0% word error to 23% error with 
the median at about 3.0%. The female speakers got significantly better results than the male 
speakers. Further examination showed that the males in this corpus tended to speak faster 
and stray from the domain more frequently, resulting in utterances with -higher perplexity. 

The error rates varied significantly depending on the site where the data was collected. 
A closer examination of the results (for the Nov92 evaluation) showed that this was due to 
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several effects, including the number of serious spontaneous speech effects, and the amount 
of training from each site. We found (based on comparison of each error with the detailed 
transcriptions) that 22% of the word errors were directly caused by spontaneous speech 
effects. If we removed the errors due to spontaneous effects, then the remaining error rate 
was found to vary inversely with the square root of the amount of training data, as expected. 
Thus, the data from MIT, which had the lowest number of spontaneous effects and by far 
the most training data, resulted in the lowest error rate. As the error rate was reduced due to 
more training, a higher percentage of the remaining errors were due to speech disfluencies. 
This problem remains a difficult one. 

In Table 5.2 we observe a large variation in overall performance on the class A+D 
utterances for each segment of the test data originating at a given collection site, as shown 
in the rightmost column. We believe that most of this variation can be explained by two 
easily measured factors - amount of training data from the matching site, and the number 
of errors due to all spontaneous speech effects.    The actual number of training utterances 

% Word Error Due To: Overall 
#Utts Modeling Spontaneous % Word 

Site Training Deficiency Effects Error 

MIT 3700 2.7 0.5 3.2 
BBN 1400 4.5 0.8 5.3 
CMU 1000 5.3 0.5 5.8 
SRI 800 5.7 2.0 7.7 
AT&T 800 6.4 4.0 10.4 

Table 5.2: BYBLOS performance on February '92 test as a function of originating site (class 
A+D). 

that we used from each site is shown in Table 5.2. The next column shows the word error 
rate that we attribute to general modeling deficiencies after removing those errors that we 
judged were due to spontaneous speech effects. The variation due to modeling seems well 
correlated to the amount of training data available from each site. The numbers show the 
expected halving of the error rate for a quadrupling of the training data. In particular, we 
feel that the higher performance on the MIT data can be explained entirely by the increased 
amount of data from that particular site. 

The errors due to spontaneous speech effects in Table 5.2 were counted by matching the 
output of BYBLOS against the detailed transcriptions. The transcriptions contain specific 
markings for many spontaneous speech effects including: nonspeech events, word frag- 
ments, mispronunciations, emphatic stress, lengthening, and verbal deletions. Any error that 
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occurred in the immediate vicinity of such a marking was counted as an error due to spon- 
taneous speech. The table shows that the noticeably worse performance on data from SRI 
and AT&T can be explained by the larger proportion of errors due to spontaneous speech 
effects. It also shows that errors due to spontaneous speech effects account for only about 
22% of the total. 

5.2   Real-Time Implementation 

A real-time demonstration of the entire spoken language system described above has been 
implemented. The speech recognition was performed using BBN HARK™, a commercially 
available product for continuous speech recognition of medium-sized vocabularies (about 
2,000 words). HARK stands for High Accuracy Recognition Kit. HARK™ is based on 
similar techniques to BYBLOS, but does not include the most advanced and expensive 
techniques. It can run in real-time entirely in software on a workstation with a built-in A/D 
converter (e.g., SGI Indigo, SUN Sparc, or HP715) without any additional hardware. 

The speech recognition displays an initial answer as soon as the user stops speaking, and 
a refined (rescored) answer within 1-2 seconds. The natural language system chooses one 
of the N-best answers, interprets it, and computes and displays the answers, along with a 
paraphrase of the query so the user can verify what question the system answered. The total 
response cycle is typically 3-4 seconds, making the system feel extremely responsive. The 
error rates for knowledgeable interactive users appears to be much lower than those reported 
above for naive noninteractive users. 

5.3    Summary 

We have described the techniques and results for the BYBLOS speech recognition system 
when used to recognize spontaneous speech as part of a spoken language understanding 
system. BYBLOS is connected to the understanding component via an N-best interface, 
which is a modular and efficient way to combine multiple knowledge sources at all levels 
within the system. In addition, the N-best strategy was shown to be useful within the speech 
recognition system as a means of applying expensive knowledge sources, such as cross-word 
acoustic models and trigram language models. For the Class A+D subset of the November 
'93 DARPA test the official BYBLOS speech recognition results were 3.3% word error. 

Finally, the entire system has been implemented to run in real time on a standard work- 
station without the need for any additional hardware. 



Chapter 6 

Robust Speech Recognition 

In the next chapter, we discuss experiments and methods developed specifically for dealing 
with testing conditions that are markedly different from the conditions in the training data. 

6.1    Experiments in Robust Speech Recognition 

Our recent work was focused in four specific problem areas and tested in the 1993 ARPA CSR 
evaluation. A common thread running through these experiments is that the test condition 
exposes the recognizer to phenomena not observed in the training data. In all of the following 
experiments, we used the SI-37 corpus for acoustic training of the HMMs. This corpus 
consists of 12 speakers from WS JO plus 25 speakers from WSJ1. All of this data is read 
speech from Wall Street Journal texts, by native speakers of American English, and from the 
Sennheiser channel only. These experiments were supported by the new "Hub and Spoke" 
testing paradigm proposed by BBN and adopted by the 4C committee (Continuous Speech 
Corpus Collection Committee). This paradigm facilitates carefully controlled experiments 
on many specific problem areas of interest. 

Here we investigated 

1. spoken language effects due to subject variability and spontaneous dictation, 

2. non-native speakers of the language, and 

3. new microphones not used in training. 

34 
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6.1.1   Very Large Vocabulary SI Recognition 

In this work we attempted to go beyond the standard 20K-word open-vocabulary grammar 
created by Doug Paul at Lincoln Laboratory. 

The test data, which was collected using raw text versions of the prompts used in WS JO, 
has a vocabulary of 64K-words. The lexicon of the standard 20K open grammar was defined 
by taking the 20K most frequent words measured over the LM training data. This training 
data consists of normalized texts from 1987-1989 WSJ, or about 35 million words. 

We found that about 2.5% of a development set was not included in the 20K open 
vocabulary. We looked at the OOV rate as a function of vocabulary size on a development 
test set and found that we could reduce the OOV rate to about 0.2% by including the 40K 
most frequent words in the lexicon. 

We added, to the LM training, an additional 3 year's of WSJ data from the TIPSTER 
corpus produced by the Linguistic Data Consortium (LDC). This text was filtered to remove 
all tables, captions, numbers, etc. 

We modeled spoken language effects that we observed in the acoustic training data. Since 
the WSJ1 prompting texts were not normalized to deterministic word sequences, subjects 
showed considerable variability in their reading of the prompting text. For example, while 
the standard language model would not allow it, subjects often inserted the word, "AND", 
in the phrase, "one hundred AND sixty". Additional variability was introduced by subjects 
pronouncing abbreviations like, "CORP." and "INC." or verbalizing the punctuation. We 
modeled these effects by manipulating the normalized texts from WSJO and adding them to 
the LM training. The table below shows the effect of expanding the vocabulary on OOV 

Test Set 
%OOV % Word Error 

20K 40K 20K 40K 
Development 
Evaluation 

2.5 
1.7 

0.2 
0.2 

16.4 
14.3 

12.9 
12.3 

and word error rate. Surprisingly, the addition of 3 year's LM training (from a period post- 
dating the test data) improved performance on the utterances that were completely inside 
the vocabulary. Evidently, even the common trigrams are poorly trained with only the 35 
million word WSJO corpus. Overall, our modifications to the lexicon and grammar training 
reduced the word error by 14-17%. 
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6.1.2   Spontaneous Dictation 

Another area we investigated was spontaneous dictation. The subjects were primarily former 
or practicing journalists with some experience at dictation. They were instructed to dictate 
general and financial news stories that would be appropriate for a newspaper like WSJ. 

The OOV words in the spontaneous data were more likely to be proper nouns from 
recent events that were not covered by the LM training material. To counter this, we added 
approximately 1000 new words that were found in the spontaneous portion of the acoustic 
training data in WSJ1. This portion numbers about 8K utterances. We added it to the LM 
training as well. New weights for the new LM, HMM, and SNN were all optimized on 
spontaneous development test data. The table below shows that the OOV remains near 1% 

Test Set 
%OOV % Word Error 

20K 40K 41K 20K 41K 
Development 
Evaluation 

2.9 
4.8 

1.4 
1.9 

0.8 
1.5 26.1 

21.7 
20.4 

even after the enlargement to a 41K lexicon. Overall, the 41K trigram reduces the word 
error by 22% over the 20K standard trigram on the November '93 CSR S9 evaluation test. 

6.1.3   Adaptation for Outlier Speakers 

Another area we investigated was how to repair the SI performance degradation of outlier 
speakers who are non-native speakers of American English. The speakers were primarily 
from Europe and Asia, and spoke English as their second or third language. 

We proposed to reduce this problem by using a speaker-transformation based on a Prob- 
abilistic Spectral Mapping (PSM) that adapts the HMM of each reference speaker in the 
SI training set, so that it models the target speaker. The adaptation is performed using 40 
sentences of adaptation speech that have been collected from every training and test speaker. 
First, a speaker-dependent codebook is created for the target speaker. We time align the 
corresponding sentences from each training speaker and the target speaker. The VQ index 
of the aligned frames are used to create a probabilistic confusion matrix between the target 
speaker and each training speaker. This matrix was normalized to produce a probabilistic 
VQ mapping. Then, each discrete pdf for the training speaker was multiplied by the appro- 
priate matrix to produce a model for the target speaker. Each transformed model was used 
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to recognize the adaptation data from the target speaker in order to determine how well this 
new model matched the target speaker. Finally the transformed models were averaged with 
weights that depended on the recognition error rate on the adaptation data. For native speak- 

Test Set 
Recognition Paradigm 
SI-37 SA-37 

Development 
Evaluation 

~45 
32.3 

17.3 
14.8 

ers, we expect this system to achieve about 7-8% word error averaged over the speakers. 
The table above shows a 4-6 fold increase in expected error for non-native speakers in SI 
mode. With PSM adaptation, however, the degradation factor is reduced to 2-2.5 times the 
SI error. 

It is surprising that so much of the degradation due to non-native dialect can be removed 
by a correction in the spectral space only. Note that we did not modify the phoneme 
inventory, the pronunciation dictionary, or the language model. 

6.1.4   Adaptation to a Known Microphone 

In a separate paper [4] we consider the problem of adapting a large corpus of acoustic 
training data collected on one microphone to a new one, for which a small sample of data 
(400 utterances) is available for adaptation. 

We found that, after adaptation, the word error rate for a boom microphone and a 
telephone handset were only slightly higher than that of the Sennheiser microphone, even 
though we used models derived from the Sennheiser channel only. 

In this paper, we present several approaches designed to increase the robustness of 
BYBLOS, the BBN continuous speech, Hidden Markov Model (HMM) recognition system. 
We address the problem of increased degradation in performance when there is mismatch 
in the characteristics of the training and the test microphones. First we compare RASTA 
processing and Cepstrum Mean Subtraction as preprocessing methods, to compensate for 
unknown channel transfer function effects, when we have no information about the new 
microphone. Then we introduce a new algorithm that computes a probabilistic transformation 
from the training microphone codebook to that of a new microphone, given some information 
about the new microphone. We test this algorithm in supervised mode and, combined with a 
microphone selection method, in unsupervised mode. We present experimental results which 
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show that the proposed algorithm combined with cepstrum mean subtraction, improves the 
recognition accuracy when the system is tested on a microphone with different characteristics 
than the one on which it was trained. 

6.2   Introduction 

Interactive speech recognition systems are usually trained on substantial amounts of speech 
data collected with a high quality close-talking microphone. During recognition, these sys- 
tems require the same type of microphone to be used in order to achieve their standard 
accuracy. This is a highly restricting condition for practical applications of speech recog- 
nition systems. One can imagine a situation where it would be desirable to use a different 
microphone for recognition than the one with which the training speech was collected. For 
example, some users may not want to wear a headmounted microphone. Others may not 
want to pay for a high quality microphone. Additionally, many applications involve recog- 
nition of speech over telephone lines and telephone sets with high variability in quality and 
characteristics. However, we know that even highly accurate automatic speech recognition 
systems perform very poorly when they are tested with microphones with different charac- 
teristics than the ones, that they were trained on [26, 27]. We could compensate for this 
degradation in performance either by retraining the HMMs with data collected with the new 
microphone encountered during the recognition stage, a rather expensive approach for real 
applications, or by training on a large number of microphones in the hope that the system will 
obtain the necessary robustness. In this paper we present a different approach by modeling 
the difference between the test and the training microphone prior to recognition. 

We have developed a technique for adaptation to a new microphone based on modifying 
the continuous densities in a tied-mixture HMM system, using a relatively small amount 
of stereo training speech. We call this method Tied-Mixture Normalization (TMN) and it 
is presented in Section 3. In section 4 we use this method to address the microphone 
independence problem, by combining it with a microphone selection algorithm. 

Prior to developing the new algorithm, in the context of microphone independence, we 
evaluated the RASTA algorithm and the Cepstrum Mean Subtraction, two simple cepstrum 
preprocessing methods, that try to alleviate the effect of linear spectral distortion of recorded 
speech. 
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6.3 Cepstrum Preprocessing 

Microphones distort the speech signal mainly into two distinct ways. First, they allow 
different levels of ambient noise that account for an additive effect in the recording speech 
and second they act as unknown linear filters, causing a variable spectral tilt that depends 
on the specific microphone characteristics. The convolution^ effect appears as an additive 
constant both in the log spectrum and the cepstrum domain. The RelAtive SpecTrAl (RASTA) 
Processing [28] aims at removing the influence of an unknown, slowly time varying channel 
transfer function on the speech features. It smoothes the cepstrum vector with a five-frame 
averaging window, and also removes the effect of a slowly varying multiplicative filter, by 
subtracting an estimate of the average cepstrum. In Cepstrum Mean Subtraction we compute 
the sample mean of the cepstrum vector over the utterance, and then subtract this mean from 
the cepstrum vector at each frame. In both methods, speech frames are not distinguished 
from noise frames. The processing is applied to all frames equally. 

6.4 Tied Mixture Normalization 

In a Tied-Mixture Hidden Markov Model (HMM) system [29, 30], speech is represented by 
an ensemble of Gaussian mixture densities. Every frame of speech that is quantized, is 
represented by a set of mean vectors and variances that characterize the mixture density 
codebook. This codebook has been derived from a subset of the training data, therefore it 
is mostly characteristic of the location and distribution of the training data and the training 
microphone in the acoustic space. However if the codebook was created with data collected 
with some other microphone, due to the additive and convolutional effect on speech specific 
to this new microphone, the data would be distributed differently in the acoustic space and 
the ensemble of means and variances of the codebook would reflect the characteristics of 
the new microphone. This is the case of the mismatch in training and testing microphone. 
Without any compensation, we quantize the test data recorded with the new microphone, 
using the mixture codebook generated from recordings with the training microphone. This 
inevitably results in a degradation in performance, since the codebook does not model the 
test data. 

We introduce a new algorithm, called Tied Mixture Normalization (TMN) to compute 
the codebook transformation from the training microphone to the new test microphone. 
The TMN algorithm requires a relatively small amount of stereo speech adaptation data, 
recorded simultaneously with the microphone used for training (primary microphone) and 
the new microphone (secondary microphone). Then using the stereo data we can adapt the 
existing HMM model to work well on the new testing condition despite the mismatch with 
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the training conditions. 

We assume that we have a tied-mixture densities codebook (set of Gaussians distri- 
butions), derived from a subset of the training data that was recorded with the primary 
microphone. These Gaussian distributions are used as the bases of the tied-mixture distri- 
butions. We quantize the adaptation data from the first channel and we label each frame of 
speech with the index of the most likely Gaussian distribution in the tied-mixture codebook. 
Since there is an one-to-one correspondence between data of the first and second channel we 
use the VQ indices of the frames of the data of the first channel to label the corresponding 
frames of the data of the second channel. Then for each of the VQ clusters, from all the 
frames of the secondary microphone data with the same VQ label, we compute the sample 
mean and the sample covariance of the cepstrum vectors that represent a possible shift and 
scaling of this cluster in the acoustic space 

the Gaussian distributions of the codebook and define a normalized codebook transforma- 
tion to accommodate the secondary microphone. The new Gaussians distributions are then 
used in conjunction with the mixture weights (sometimes called the discrete probabilities) 
of the original model. 

One of the possible weaknesses of the TMN algorithm is that each cluster of the original 
codebook is transformed independently of all the others. This assumption goes against our 
intuition that a codebook transformation due to different microphone characteristics should 
maintain continuity between adjacent codebook clusters and shift all the clusters in the same 
general direction. Modeling each codebook cluster independently, we may not estimate 
the correct transformation due to insufficient or distorted data. To alleviate this problem 
we use the following approach, originally suggested for speaker adaptation [31]: when the 
centroid of the ithe codebook cluster is denoted by mi and that of the transformed secondary 
microphone by yn, the deviation vector between these two centroids is 

di = fii — rrii     i = l,2, ...,C (6.1) 

where C is the size of the codebook. For each cluster centroid c;, the deviation vectors of 
all clusters {di} are summed with weighting factors {IO^.} to produce the shift vector A?. 

c c 
A-= Q>tt*)/(£>a) (6-2) 

The weighting factor wik is the probability {P(mk\mi)}a of centroid mk of the original 
codebook to belong to the ith cluster raised to the a power. This weight is a measure of 
vicinity among clusters and the exponentiation controls the amount of smoothing between 
the clusters. Finally, the centroid c'{ of the ith cluster of the transformed codebook is: 

c'^a + Ai (6.3) 
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Similarly the variances of the clusters of the new codebook are computed as the averaged 
summations over all sample variances computed in the first implementation of TMN. 

6.5   Microphone Independence 

We present some work that we initially conducted towards the goal of microphone inde- 
pendence using the TMN algorithm. The identity of the test microphone is not known in 
microphone independence and the problem becomes much more complicated. In this case, 
one technique is to estimate a TMN transformation for many different types of microphones 
and then select one of those transformations. 

We had available stereo training data using several microphones that were not used in the 
test. We grouped the secondary microphones in the training into six broad categories, such as 
lapel, telephone, omni-directional, directional microphones, and two specific desk-mounted 
microphones. Then, using the TMN algorithm we estimated a transformed codebook for each 
of the microphone classes using stereo data from that microphone class and the Sennheiser, 
being sure that the adaptation data included both male and female speakers. 

To select which microphone transformation to use, for each of the seven microphone 
types (Sennheiser plus six alternate types) we estimated a mixture density consisting of eight 
Gaussians distributions. Then, given a sentence from an unknown microphone, we computed 
the probability of the data being produced by each of the seven mixture densities. The 
one with the highest likelihood was chosen, and we then used the transformed codebook 
corresponding to the chosen microphone type. We found that on development data this 
microphone selection algorithm was correct about 98% of the time, and had the desirable 
property that it it never misclassified the Sennheiser data. 

6.6   Description of Experiments 

All of the experiments that will be described were performed using the BBN BYBLOS 
speech recognition system [20]. 
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6.6.1   Cepstrum Preprocessing Results 

The system was trained on the Wall Street Journal (WSJ) pilot corpus (WSJO) which contains 
12 hom*s of training speech recorded from 12 speakers and was tested on the 5K-word devel- 
opment test using a bigram language model. The RASTA preprocessing and the Cepstrum 
Mean Subtraction were tested on the verbalized punctuation (VP) 5K-word test set. Every 
test utterance was recorded simultaneously on the same microphone used in the training (a 
high-quality noise-canceling Sennheiser microphone) and on some other microphone which 
was not known, but which ranged from an omni-directional boom-mounted microphone or 
table-mounted microphone, a lapel microphone, or a speaker-phone. We present the error 
rates for the baseline system which uses the normal mel-cepstral values and for the two 
preprocessing methods in Table 6.1. The results show that the word error rate increases by 
a factor of three when the microphone is changed radically. The RASTA algorithm reduced 
the degradation to a factor of 2.3, while degrading the performance on the Sennheiser micro- 
phone just slightly. The mean subtraction also reduced the degradation, but did not degrade 
the performance on the training microphone. 

Sennheiser   Secondary-Mic 
Baseline System 12.0% 37.7% 
Rasta Preprocessing 12.5% 27.8% 
Cepstral Mean Subtraction       11.8% 27.2% 

Table 6.1: Comparison of word error rate among the baseline BYBLOS system and two 
cepstrum preprocessing techniques 

6.6.2   Unknown microphone adaptation results 

We compare the performance of the baseline system with no preprocessing, with the same 
system using cepstrum mean subtraction and one that uses the combination of mean subtrac- 
tion and the microphone adaptation strategy we described in section 4 for the case of unknown 
microphones. Using the same training configuration, the recognition was performed on the 
5K-word non-verbalized punctuation (NVP) development test set using a bigram language 
model. The test contained speech collected with four microphones which we try to model 
with the generic microphone types transformations we described in section 6.5. 

Again, the cepstral mean subtraction reduced the degradation somewhat. The TMN 
algorithm with microphone selection reduced the error rate by 30% relative to the cepstral 
mean subtraction. 
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Sennheiser   Secondary-Mic 
Baseline System 11.6% 40.2% 
Cepstral Mean Subtraction 11.3% 32.4% 
Tied-Mixture Normalization       11.3% 21.3% 

Table 6.2: Comparison of word error rate for the task of microphone independence 

6.6.3   Known Microphone Adaptation Results 

Finally we describe our latest results on the task of microphone adaptation to a known mi- 
crophone. The configuration of the recognition system is improved mainly by adding more 
training data. We used 62 hours of training speech from the WSJO and WSJ1 corpora, 
collected from 37 speakers, with a Sennheiser close-talking microphone. Cepstrum Mean 
Subtraction is used as a standard feature of our recognition system front-end. The recognition 
is done using trigram language models. The test data comes from the development and eval- 
uation sets of the WSJ1 corpus and consists of stereo recordings with Sennheiser microphone 
and an Audio-Technica 853a directional stand-mounted microphone or a telephone handset 
over external telephone lines. Adaptation data was supplied separately consisting a total 
of 800 stereo recorded utterances from 10 speakers; 400 sentences recorded simultaneously 
with the Sennheiser and the Audio-Technica and 400 sentences recorded with the Sennheiser 
and the telephone handset. The telephone handset differs radically from the other two mi- 
crophones, having the main characteristic of allowing a much narrower band of frequencies 
than the others. Therefore we chose to bandlimit the Sennheiser training data between 300- 
3300 Hz to create new bandlimited phonetic word models, prior to applying any adaptation 
scheme. We also bandlimited the stereo adaptation data for the telephone handset. After the 
bandlimiting processing, we applied the TMN algorithm to both sets of adaptation data to 
generate the codebook transformations specific to the new microphones. During testing, the 
telephone data is bandlimited first, and data collected with both microphones is quantized us- 
ing the corresponding transformed codebook. In Tables 6.3 and 6.4 we show the error rates 
of the baseline system when tested on the Sennheiser part of the data, and when it is tested 
on either of the secondary microphones. The mismatch between the Audio-Technica and the 
Sennheiser microphone does not cause a serious degradation compared with the degradation 
in error rate due to the mismatch between the telephone handset and the Sennheiser, which 
is severe. Furthermore, we see that the TMN adaptation reduces the degradation in both 
cases. Combined with bandlimiting the data, it has a significant effect on the telephone data 
reducing the error rate by a factor of 2.3. 
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Dev     Eval 
Sennheiser 8.3%    7.9% 
Audio-Technica with no adaptation -       10.6% 
Audio-Technica with TMN adaptation   9.0%    9.6% 

Table 6.3: Comparison of word error rate for microphone adaptation using the Sennheiser 
or the Audio-Technica microphone 

Dev      Eval 
Sennheiser 8.9% 8.7% 
Telephone handset with no adaptation - 29.5% 
Telephone handset 
with Bandlimiting and TMN adaptation 12.7% 12.8% 

Table 6.4: Comparison of word error rate for microphone adaptation using the Sennheiser 
or the Telephone handset microphone 

6.7   Conclusions 

We described and evaluated three different methods to improve the robustness of the BY- 
BLOS recognition system with respect to mismatches between the training and test mi- 
crophone. First, we implemented the Cepstral Mean Subtraction, a very simple cepstrum 
preprocessing technique. This method improves the recognition accuracy of the base system 
when a new test microphone is used, while it does not degrade the baseline performance 
when the system is tested on the training microphone. As a result we incorporated this 
method in the BYBLOS front-end as a standard feature. 

Next we presented the Tied Mixture Normalization algorithm, that computes a proba- 
bilistic transformation to map the codebook created from data collected with the training 
microphone to a codebook that models the data collected with the new test microphone. The 
algorithm uses only small amounts of stereo adaptation data to compute the transformation. 
We saw a significant improvement in performance by using this algorithm to adapt to two 
new microphones different from the training one. 

Finally we developed a microphone selection algorithm to enable the Tied Mixture Nor- 
malization to do unsupervised adaptation. In this case the method is used with adaptation 
data that come from generic microphone classes. The microphone selection algorithm is used 
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to select the most like codebook transformation. Our experiments showed that the combina- 
tion of microphone selection with TMN gives a significant improvement in accuracy. Very 
important, that the microphone selection algorithm does not misclassify the training micro- 
phone so this method does not degrade the recognition accuracy when the same microphone 
is used for training and testing. 

6.8    Summary 

1. We were able to reduce the word error rate obtained by nonnative speakers by more 
than a factor of two, using the supervised PSM technique with 40 adaptation sentences. 

2. Increasing the vocabulary size and language training had a bigger effect on spontaneous 
speech than it did for read speech. 

3. Testing with a microphone that is different from the one used during training does not 
have to be a serious problem. If the microphone is known, we can use an appropriate 
transformation on the models. If the microphone is unknown, we can determine an 
appropriate transformation from the overall characteristics of the speech. 
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